Synthesis of Quinolone Analogues: 7-[(2S, 4R)-2-Aminomethyl-4hydroxypyrrolidin-1-yl] Quinolones

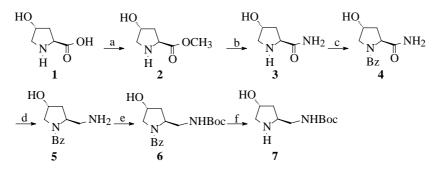
Jiu Yu LIU, Hui Yuan GUO*

Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050

Abstract: New quinolone derivatives of 7-[(2S, 4R)-2-aminomethyl-4-hydroxypyrrolidin-1-yl] quinolone-3-carboxylic acids were synthesized by condensation of 7-halo substituted quinolone-3-carboxylic acids with (2S, 4R)-2-aminomethyl-4-hydroxypyrrolidine. These compounds were characterized by FAB-MS and ¹H NMR.

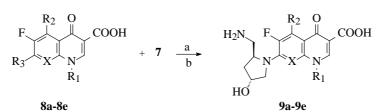
Keywords: Pyrrolidine, quinolone, synthesis.

Quinolone antibacterial agents have emerged as one of the dominant classes chemotherapeutic drugs for the treatment of various bacterial infections¹. We have focused our attention on the modification of the C-7 basic group of the quinolone which has been most varied. In 1987, Uno *et al.*² reported that 3-hydroxypyrrolidine quinolones showed more active antibacterial activities than Norfloxacin *in vivo*. In 1998, Fujita *et al.*³ reported that 2-aminomethylpyrrolidine quinolones have the same antibacterial activities *in vitro* against Gram-positive and Gram-negative bacteria by contrast with spafloxcin. So our interest was directed to the synthesis of 2-aminomethyl-4-hydroxypyrrolidine quinolones and their antibacterial activities.


Chemistry

As shown in **Scheme 1**, we used compound 1 as the starting material, compounds 2 and 3 were synthesized according to literature⁴⁻⁵. **3** reacted with benzyl chloride to give **4**, and then reduction of the carbonyl gave **5**. The resulting amine **5** was protected by a Boc group using di-*tert*-butyl dicarbonate (Boc₂O), which produced the Boc protected compound **6**. Finally, the Bz protective group of **6** was removed by H₂/Pd-C10% to give the new pyrrolidine compound **7**.

The coupling reactions of the new pyrrolidine derivatives with various quinolone and naphthyridone nuclei (**8a-e**) according to well-established literature procedures (**Scheme 2**)⁶. The Boc protecting group was removed using CH₃OH/CH₃COCl and the final products **9a-e** was got.


In total, we have synthesized five new target compounds. The structures of all the

^{*} E-mail: hyguo@public.fhnet.cn.net

a: HCl, CH₃OH; b: NH₄OH, r.t.; c: PhCH₂Cl, K₂CO₃; d: LAH, THF, 60 , 82%; e: (Boc)₂O, CH₃OH, r.t., 81%; f: 10% Pd/C/H₂, 3×10^{3} Kpa, 50 , 72%

Scheme 2

a: CH3CN, Et3N, r.t.; b: CH3OH, CH3COCl, r.t.

8a:
$$R_1 = \bigcup_{F}^{F}, R_2 = H, R_3 = Cl, X = N$$
9a: $R_1 = \bigcup_{F}^{F}, R_2 = H, X = N, 71\%$ 8b: $R_1 = \bigcup_{F}^{T}, R_2 = H, R_3 = Cl, X = N$ 9b: $R_1 = \bigcup_{F}^{T}, R_2 = H, X = N, 58\%$ 8c: $R_1 = \bigcup_{F}^{T}, R_2 = H, R_3 = F, X = C - H$ 9c: $R_1 = \bigcup_{F}^{T}, R_2 = H, X = C - H, 50\%$ 8d: $R_1, X = \bigcup_{F}^{C}, X_2 = H, R_3 = F$ 9d: $R_1, X = \bigcup_{F}^{C}, R_2 = H, R_3 = F$ 9d: $R_1, X = \bigcup_{F}^{C}, R_2 = NH_2, R_3 = F, X = C - F$ 9e: $R_1 = \bigcup_{F}^{T}, R_2 = NH_2, X = C - F, 26\%$

target compounds were confirmed by ¹H NMR and FAB-MS (data shown in Table 1).

Antibacterial Activity

Using ciprofloxcin and gatifloxacin as contrast, we tested the antibacterial-activity *in vitro* of the target compounds with some clinical separated pathogens, quality control strains and standard strains. The target compounds **9a-e** were dissolved in H_2O and to be carried to test MICs using double dilution method. The results were shown in **Table 2**. The activities of **9a-e** were less than ciprofloxcin and gatifloxacin.

It seems that the large volume of R group in the C-2 pyrrolidine position decreased the activity.

Synthesis of Quinolone Analogues

 Table 1
 ¹H NMR and FAB-MS data of target compounds

Entry	¹ H NMR (CF ₃ COOD, ppm),	FAB-MS m/z
9a	2.20-2.35 (m, 2H, Pyrrolidine C ₃ -2H), 3.16-4.46 (m, 5H, Pyrrolidine C ₂ - C <u>H</u> ₂ -NH ₂ , Pyrrolidine C ₅ -2H, Pyrrolidine C ₄ -OH), 4.55 (br, 1H, Pyrrolidine C ₂ -H), 4.80 (s, 1H, Pyrrolidine C ₄ -H), 7.17-7.58 (m, 3H, Ph-3H), 8.23 (d, 1H, J=10.8 Hz, C ₅ -H), 9.14 (s, 1H, C ₂ -H)	435 (M ⁺ +1)
9b	1.22-1.53 (m, 4H, cyclopropyl $2 \times CH_2$), 2.41-2.63 (m, 2H, Pyrrolidine C ₃ -2H), 3.73-4.29 (m, 6H, Pyrrolidine C ₂ - <u>H</u> -C <u>H</u> ₂ -NH ₂ , Pyrrolidine C ₅ -2H, Pyrrolidine C ₄ -OH), 4.91-5.24 (m, 2H, Pyrrolidine C ₄ -H, cyclopropyl CH), 8.19 (d, 1H, J=11.1 Hz, C ₅ -H), 8.17 (s, 1H, C ₂ -H)	363 (M ⁺ +1)
9c	$ \begin{array}{l} 1.26\text{-}1.62 \ (m, \ 4H, \ cyclopropyl \ 2 \times CH_2), \ 2.48\text{-}2.68 \ (m, \ 2H, \ Pyrrolidine \ C_3\text{-}2H), \\ 3.69\text{-}4.28 \ (m, \ 6H, \ Pyrrolidine \ C_2\text{-}\underline{H}\text{-}C\underline{H}_2\text{-}NH_2, \ Pyrrolidine \ C_5\text{-}2H, \ Pyrrolidine \ C_4\text{-}OH), \\ 4.92\text{-}5.11 \ (m, \ 2H, \ Pyrrolidine \ C_4\text{-}H, \ cyclopropyl \ CH), \\ 7.62 \ (s, \ 1H, \ C8\text{-}H), \\ 8.15(d, \ 1H, \ J\text{=}11.7 \ Hz, \ C_5\text{-}H), \\ 9.18 \ (s, \ 1H, \ C_2\text{-}H) \end{array} $	362 (M ⁺ +1)
9d	1.76 (s, 3H, C ₃ -CH ₃), 2.25-2.61 (m, 2H, Pyrrolidine C ₃ -2H), 3.35-3.71 (m, 2H, Pyrrolidine C ₂ -C <u>H₂-NH₂)</u> , 4.01-5.41 (m, 8H, Pyrrolidine C ₅ -2H, Pyrrolidine C ₂ - <u>H</u> , Pyrrolidine C ₄ -OH, C ₂ -2H, C ₃ -H, Pyrrolidine C ₄ -H), 7.94 (br, 1H, C ₅ -H), 9.18 (br, 1H, C ₂ -H)	378 (M ⁺ +1)
9e	1.34-1.48 (m, 4H, cyclopropyl $2 \times CH_2$), 2.27-2.63 (m, 2H, Pyrrolidine C ₃ -2H), 3.61-4.38 (m, 6H, Pyrrolidine C ₂ - <u>H</u> -C <u>H</u> ₂ -NH ₂ , Pyrrolidine C ₅ -2H, Pyrrolidine C ₄ -OH), 4.88-5.19 (m, 2H, Pyrrolidine C ₄ -H, cyclopropyl CH), 9.08 (s, 1H, C ₂ -H)	395 (M ⁺ +1)

Sturin	MIC (µg/mL)							
Strain	9a	9b	9c	9d	9e	Gatifloxacin	Ciprofloxacin	
S.pneumonia e 9798	>64	>64	>64	>64	>64	0.25	4	
S. pyogenes A 12	>64	>64	>64	>64	64	0.5	1	
S. aureus AT CC 25923	>64	>64	>64	>64	>64	0.5	0.25	
S. aureus 9616	>64	>64	>64	>64	64	0.25	0.5	
S.epidermidi s 9726	>64	>64	>64	>64	16	1	4	
E. Coli AT CC 25922	>64	>64	>64	>64	16	0.03	0.03	
E. Coli 834	>64	>64	>64	>64	16	0.12	0.06	
P. aeruginos a 17	>64	64	>64	>64	>64	1	0.25	
K. pneumoni ae 14	>64	>64	>64	>64	8	0.03	0.03	
Bacillus proteus 9	>64	64	>64	>64	>64	0.5	0.25	

 Table 2
 The antibacterial activity in vitro of target compounds

Jiu Yu LIU et al.

Acknowledgments

The authors would like to thank the National Research Center of Drug and Metabolite Analysis for measuring the data of ¹H NMR and FAB-MS. We also want to thank the pharmacology laboratory of Institute of Medicinal Biotechnology for testing the antibacterial activity.

References

- 1. H. Y. Guo, Chin. J. Antibiotics (in Chinese), 1992, 17(2), 99.
- 2. T. Uno, K. Iuch, Y. Kawahata, et al., J. Heterocyclic. Chem., 1987, 24, 1025.
- 3. M. Fujita, K. Chiba, Y. Tominaga, et al., Chem. Pharm. Bull., 1998, 46(5), 787.
- 4. T. F. Braish, D. E. Fox, EP: 420487, **1991**, (CA 1991, 115: 49723v).
- 5. M. Altamura, E. Perrotta, P. Sbraci, et al., J. Med. Chem., 1995, 38(21), 4244.
- 6. J. P. Sanchez, J. M. Domagala, S. E. Hagen, et al., J. Med. Chem., 1988, 31(5), 983.

Received 17 April, 2003

538